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Logarithmic-in-time slow dynamics has been found for individual cracks in a solid. Furthermore,
this phenomenon is observed during both the crack acoustic conditioning and the subsequent relaxation.
A thermoelastic mechanism is suggested which relates the log-time behavior to the essentially 2D
character of the heating and cooling of the crack perimeter and inner contacts. Nonlinear perturbation
of the contacts by a stronger (pump) wave causes either softening or hardening of the sample, and
induces either additional absorption or transparency for a weaker (probe) acoustic wave depending on
frequency of the latter.
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tion of the crack by acoustic loading. For the first time we
observed the logarithmic-in-time slow dynamics of in-

Fast rectification effects.—In order to better compre-
hend our observations it is important first to recall the
Introduction.—For many materials with granular and
imperfect structure, effects with slow dynamics that are
logarithmic in time are remarkably common. Examples
are the accommodation and aftereffect in magnetic ma-
terials [1], creep phenomena in metals [2], relaxation of
rocks after acoustic stressing [3], memory and aging of
granular materials [4], and irreversible temperature rise
in glasses [5]. This universal log-time behavior is usually
attributed to the complexity of dynamical processes in
systems with wide distribution of energy barriers that
should be overcome for the relaxation of the perturbed
ensemble of the mechanical bonds [2– 4]. The initial rapid
relaxation is due to quick thermal flipping over small-
energy barriers. As their numbers are thereby exhausted,
the relaxation rate falls, since thermal fluctuations ca-
pable of activating the higher barriers are exponentially
rare. Note that logarithmic dynamics arises only for a
suitable wide spectrum of activation energies, the origin
of which and its relation to the material microstructure
remains unknown [2,3,5].

Recently, besides solids with numerous microdefects
[3], observations of slow relaxation and memory effects
were reported for interaction of ultrasonic waves with a
single crack [6]. For parametric generation of sub- and
superharmonics of the ‘‘reading-out’’ elastic wave, the
threshold amplitudes remained perturbed up to minutes
after activating the crack by another intense wave.
However, for linearly transmitted or reflected wave com-
ponents at the fundamental frequency, evidence of slow
dynamics of the individual crack was not found [6].

In the present Letter, we report observations of both the
relaxation on the scale of the acoustic period and slow
relaxation effects in the interaction of elastic waves with
individual cracks. Our approach allowed us to carefully
study the slow temporal evolution of both the sample
elastic and dissipative properties connected to perturba-
0031-9007=03=90(7)=075501(4)$20.00 
dividual cracks subjected to ‘‘conditioning’’ by an elastic
wave. Moreover, the logarithmic behavior was found
during both the crack acoustic conditioning and the sub-
sequent relaxation. We will show that the ‘‘instantane-
ous’’ effects (of material softening or hardening and
induced transparency or absorption) as well as the slow
dynamics, revealed in the wave-crack interaction, can be
consistently explained by the (i) direct acoustic perturba-
tion of inner contacts via the nonlinear effect of strain
rectification and (ii) the contact slow ‘‘breathing’’ due to
acoustically induced thermal microstrains within the
crack. Below we point out the main experimentally found
features and present some theoretical arguments confirm-
ing the formulated idea.

Experimental technique.—In this study the experimen-
tal technique and setup described in [7] was supple-
mented by measurements of the slow evolution of the
sample properties. We observed the temporal behavior of
resonance peaks for a weak (probe) longitudinal wave
with typical strain " < 10�8 in glass rods subjected to
action of another conditioning (pump) wave with typical
strains up to "� 10�6–10�5. The rods contained 1–3
thermally produced cracks. By measuring the positions,
widths, and amplitudes of the probe-wave resonances we
could simultaneously follow the variations in the elastic
and the dissipative sample properties. The maximum
amplitudes and inverse widths of a resonance peak are
proportional to the current quality factor Q � �=�,
where � is the decrement. For a few peaks, whose shape
was closest to a Lorentzian, we checked that the esti-
mates of the Q-factor variation by the peak widening and
by the amplitude variation �A were consistent.
Afterwards we used the amplitude method, which gave
a much better accuracy, within �A=A0 � 10�2, sufficient
to study the pump-induced variations in the Q factor that
reached 10% or even more.
2003 The American Physical Society 075501-1
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following. For cracks of millimeter-size L, the maximal
normal and lateral interface displacement �"L for wave
strains "� 10�8 is of subatomic scale [7]. Because of
this, the frictional and hysteretic losses are not yet acti-
vated for the probe wave. However, losses due to the
thermoelastic coupling may be very efficient, especially
at narrow inner contacts between the crack lips. For
contacts of width l � L, the theoretical analysis of the
losses [7] indicates a relaxation peak at ! � !l � D=l2,
where D is the temperature diffusion coefficient. For the
whole crack, its relaxation frequency !L is determined by
its scale L � l, so that !L � D=L2 � !l. For most rocks
and glasses, typical !L for a millimeter-scale crack
corresponds to fractions of a cycle=s, whereas for
micrometer-width inner contacts the respective frequency
may lie from kHz up to MHz band. The latter readily
explains strongly increased small-amplitude (linear)
acoustic dissipation in the kHz range at millimeter-scale
cracks [7]. Further, since the local separation of crack lips
in the contact vicinity may be orders of magnitude
smaller than the average crack opening, waves with mod-
erate strain "� 10�6–10�5 may easily perturb the inner
microcontacts (and even cause their clapping), although
the average crack opening remains hardly perturbed. For
example, for a contact whose initial strain "0 and local
applied stress 0 are related by the Hertz-type depen-
dence " / 2=3, the superimposed wave with oscillatory
stress w comparable to 0 may significantly reduce
period-averaged contact strain h"i, as schematically illus-
trated in Fig. 1. It is worth mentioning that similar
rectification (demodulation) effects are well documented
in nonlinear acoustics of the interfaces [8] and provide the
basis for the ultrasonic force mode in atomic force mi-
croscopy [9]. The resultant reduction of the averaged
contact width shifts the maximum of the thermoelastic
losses at the contact to a higher frequency !l (see inset of
Fig. 1). This should cause an increase in the quality factor
of the sample resonances located lower than !l in the
frequency domain, but simultaneously decrease the qual-
ity factor for the resonances located higher than !l.

In order to demonstrate the latter effect, among the
fabricated samples we succeeded to choose one in which a
thermally induced crack exhibited such a behavior.
0

< ε >
ε

0

σ
0

BA

 

B

A
ε ~ σ2/3

C
on

ta
ct

  s
tr

ai
n

Contact  stress

wave stress

σ
w

Sinusoidal

 

 Frequency D
is

si
pa

tio
n

FIG. 1. Schematically shown softening of the contact by
oscillating stress due to loading-unloading asymmetry. Initial
static equilibrium A � 
0; "0�, and the perturbed time-
averaged position B � 
hi; h"i�.
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Figure 2 shows records of the probe-wave resonance
peak below 4 kHz, which exhibited a pronounced in-
crease in the quality factor under the pump-wave action,
whereas the next mode above 10 kHz and a dozen or so
other peaks within the observable band up to 100 kHz
exhibited a decrease in the quality factor. In contrast to
the opposite trends in the dissipation, the resonant fre-
quencies for all peaks exhibited a consistent decrease, as
should be expected owing to the time-average softening
of the microcontact(s) induced by the pump wave.

Further increase of the oscillation amplitude, w >
0, transfers the contacts to the clapping regime, in which
the averaged stiffness and size of near-Hertzian contacts
begin to increase again. In this case both the decrement of
the probe-peak and its position in the frequency domain
may become nonmonotonous functions of the pump-wave
amplitude. Resonance curves shown in Fig. 3 demonstrate
such a nonmonotonous dependence on the pump-
amplitude both for the amplitude (that is dissipation)
and the frequency shift of one of the probe-wave peaks.
The inset shows the variation in the averaged strain h"i
simulated for a Hertzian contact as a function of normal-
ized oscillating stress w=0, which indicates similar
nonmonotonous behavior.

Elasticity/dissipation slow-dynamics.—Further inves-
tigation of the aforementioned crack-induced effects
revealed that both the dissipation and the resonance
frequencies exhibited pronounced slow dynamics.
The characteristic magnitudes of the slow drifts were
sometimes comparable to instantaneous variations pro-
duced due to the pump-rectification effect. To study the
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FIG. 2. Examples of the complementary pump-induced de-
crease in dissipation for the probe wave around 3.7 kHz and
increase in dissipation for the probe wave around 11.5 kHz. The
resonance frequency decreases in both cases. Pump wave strain
is "� 10�6.
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FIG. 3. Example of nonmonotonous amplitude dependence of
the pump-induced variations in dissipation and the probe wave
resonance frequency. The inset shows the simulated averaged
contact strain plotted against the pump-stress amplitude.
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phenomenon we documented the drifts in the probe-wave
resonance curves with 15 s intervals required to store a
single record. Figure 4(a) presents examples of variations
in the resonance peak amplitudes plotted against the
logarithm of time elapsed after both switching on or
switching off the pump wave. Figure 4(b) shows similar
slow variations �f=f0 of the resonance frequency. Thus
the observed logarithmic slow dynamics produced in the
sample dissipation and elasticity by individual cracks
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FIG. 4. Examples of the log-time dependence of the dissipa-
tion (a) and the resonance frequency shift (b) for different
peaks.
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subjected to acoustic loading is strikingly similar to the
slow relaxation effects found for rocks with inherent
numerous defects [3]. A remarkable newly revealed fea-
ture is that the log-time behavior during the crack con-
ditioning exhibits exactly the same slope (rate) as for the
postconditioning relaxation.

In the context of the above considered mechanism of
the crack/contact influence on the probe-wave resonances,
explanation for the slow logarithmic relaxation arrives
rather naturally from the dynamics of thermal conduction
in a cylindrical geometry. This geometry is specific for
both the crack perimeter and the elongated inner micro-
contacts, which, as it is argued in detail in [7], produce
the main contribution to the dissipation and hence
undergo local acoustic heating. The contact state may be
strongly perturbed by nanoscale absolute distortions at
the crack interfaces. As discussed above, such averaged
distortions for millimeter-scale cracks are produced by
rectification of the pump oscillations with strains "�
10�6–10�5 and are responsible for the instantaneous ef-
fects. Alternatively, similar distortions in the crack may
be expected as a result of temperature inhomogeneities
about 	T � 0:1–1 K. For a typical thermal expansion
coefficient �� 3� 10�6 K�1 and crack size L� 3�
10�3 m, the thermoelastic displacement is estimated as
�L	T � 10�9–10�8 m, which is comparable with the
instantaneous rectification effect. Note that direct infra-
red imaging of acoustically induced heating of several
degrees at the stress-concentration areas at crack tips and
lips is available [10]. The logarithmic slowing of the
temperature rise (in the case of conditioning) in 2D
geometry is due to the diminishing of the heat flow, which
in turn is caused by the increase in the spatial scale of the
heated region and the decrease of the temperature gra-
dients with time. Indeed, for a steplike (in time) cylin-
drical thermal source Q
r; t� localized in the area of a
radius r  l, the 2D equation for heat conduction
@T=@t�D	?T � Q=
�C� yields an asymptotically log-
arithmic law for the temperature increase 	T in the
source vicinity:

	T �
QF
k � 0�

4��CD
ln

t

l2=D
; for t � l2=D � !�1

l :

(1)

Here � and C are the material density and specific heat,
and QF
k� is the spatial Fourier transform of the source.
For the subsequent cooling after switching off the source
Q at time t � t0, there is also a log-time approximate
solution,

	T �
QF
k � 0�

4��CD

�
ln

t0
l2=D

� ln

t� t0�

l2=D

�
; (2)

valid for l2=D � t� t0  t0 and indicating the same
slope as in (1), which is predetermined by the temperature
spatial distribution produced by the initial heating. We
already pointed out that equal slopes for the conditioning
075501-3
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FIG. 5. Examples of cross-modulation spectra just after in-
tensive conditioning (solid line) and 5 min later (dashed line).
Pump wave carrier and modulation frequencies were 3.7 kHz
and 3 Hz, respectively.
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and relief were observed in the experiments (see Fig. 4),
which is a strong argument supporting the heating-
cooling mechanism. Indeed, the state of the stress-
concentration areas is essentially different at rest and
during intensive acoustic activation that causes contact
clapping and the rectification effect. Therefore, if the
dominant contribution to the observed slow drifts were
connected to the mechanism [2–4] of gradual rupture or
restoration of large ensembles of local bonds, then differ-
ent slopes should be expected for vigorously vibrating
and relaxing contact areas.

The thermal conductivity mechanism in the log-time
behavior is likely to play a dominant role for time scales
!�1

l < t < !�1
L ranging within 5–7 orders of magnitude,

in which the thermal conductivity keeps its quasi-
2D character. For thermal diffusivity D� 10�7–
10�6 m2 s�1 typical of glasses and rocks, and micron-
scale width l and millimeter-scale lengths L, the log-
time behavior may persist in the interval from
10�3–10�5 s up to several minutes, which agrees with our
observations. Note, finally, that in the crack-containing
sample, the Q factor was reduced from values of about
Q0 � 250–300 in the reference (intact) sample to Q1 �
130–160, corresponding to the crack-induced decrement
	� � �
Q�1

1 �Q�1
0 � � 2� 10�2. Since this additional

dissipation causes heating of the stress-concentration re-
gions of total length �L, then the thermal source QF
k �
0� in (1) can be estimated as QF
k � 0� �	�Wf=L,
where f is the pump-wave frequency and W is the
pump-wave elastic energy accumulated in the sample (a
glass rod 8 mm in radius and 30 cm in length). Thus, for
pump strains "� 10�6–10�5, Eq. (1) yields 	T �
0:1–10 K at our observation times, in agreement with
[10] and the above assumed magnitude of 	T.

Evidence for memory in nonlinearity.—Attempting to
reveal slow dynamics in nonlinear crack-induced effects
(for purposes of comparison with [6]), we faced a problem
that the nonlinearly excited harmonics were essentially
influenced by the system resonances, whose slow dynam-
ics strongly masked possible memory in the nonlinear
075501-4
properties. We finally succeeded in observing a very clear
manifestation of memory for the nonlinear effect of the
cross modulation [7] of the probe wave by a slowly
modulated pump wave. Figure 5 presents the modulation
spectra obtained immediately after a few minutes of
intensive conditioning of the sample and after a 5 min
pause. Since the stronger modulating wave also acted as a
pump, after the pause we switched it on again for only the
several seconds required to obtain the spectrum. There is
a remarkable difference in the second side lobe amplitude
indicating a significant change in the character of the
crack-induced nonlinearity. In contrast, the amplitudes
of the fundamental line and other side lobes are much
more weakly perturbed, which assures that the whole
resonance curve remained almost the same.

Conclusion.—The technique applied in this study re-
vealed memory and slow-dynamics effects induced by
individual cracks both in the sample nonlinearity and in
the linear elasticity and absorption. The observed variety
of instantaneous and slow-dynamics effects is consis-
tently explained by the suggested mechanism based on
a few well established features of the acoustic wave-crack
interaction, implying slowly varying thermal micro-
strains. These findings provide a new physical insight
into the origin of the logarithmic slow dynamics in
imperfect solids and should stimulate both new interpre-
tations of known pertinent data and new experiments.
Besides, our models may also be relevant to the effects of
the amplitude-dependent absorption or transparency for
the acoustic waves observed in other systems, in particu-
lar, in sand and sandstone ([11] and references therein).
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