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Abstract—This paper examines the manner in which the internal structure of a medium can affect its nonlinear
elastic properties. It is shown that, for the elasticity of a microinhomogeneous medium to possess a high level
of nonlinearity, there must be a small proportion of a soft component present in the material. The way in which
the hierarchical structure of the rigid and soft elements can influence the parameters of the medium is investi-
gated. It is demonstrated that. if the rigid elements are arranged in a hierarchical structure, the internal levels
present in the structure will not affect the further increase in the nonlinearity of the medium. On the contrary,
if the soft elements are arranged in a hierarchical structure, then the nonlinearity of the medium can increase in
a geometric progression. In real physical media, however, the range of variations in the elasticity of -the com-
ponents is limited to 3 or 4 orders of magnitude. Therefore, the ultimate increase in the nonlinearity coefficient
compared to a homogeneous medium is likewise limited to the range stated.

INTRODUCTION

Recent yvears have seen an intensive proliferation of
studies, both experimental and theoretical, into the non-
linear elastic properties of solids. Traditionally the ori-
gin of nonlinear elasticity has been ascribed to the
anharmonism of interatomic interaction [1], and the
nonlinear properties of isotropic media have been
described by a five- or nine-constant theory of elastic-
ity, in which quadratic or cubic corrections are applied
to the linear Hooke’s law [1]. In the important special
case of planar deformation, under this approximation
the stress—strain relation takes the torm

o=Me(l +yE+Be+..), 1

where M is the elastic modulus, ¥e. fe? < 1, and yand
B are coefficients often called the quadratic and cubic
nonlinear parameters. As found by experiments on sev-
eral materials (glass, polymers, and some metals), Yand
B are of the order of unity. This result is in good agree-
ment with the view that the intermolecular potential
obeys a weakly parabolic law. Hence, these materials
can show a noticeable nonlinearity solely under a large
amount of strain, € ~10~* to 1072, close to their strength
limit.

At the same time, numerous facts not fitting into the
above view have been ascertained. Among other things,
experiments have found that, for many kinds of terres-
trial rock. polycrystalline metals. building materials,
and porous. granular, and fissured media, the ?uadratlc
nonlinearity parameter is as high as 10%- 10°, and its
cubic counterpart, as high as 10°-10% over a wide fre-
quency interval extendmg7 from hertz to megahertz val-
ues [2]. It is likewise worth noting that the linear acous-
tic properties of these media have not exhibited an
equally unusual behavior (3].

It has become clear, at least in principle, that the
nonlinearity of such media is related in some ways to
features in their microstructure (various defects, such
as cracks, pores, and grains). Physical nonlinearity
models based on consideration of the properties of such
inclusions have been built for bubble-seeded liquids
and porous elastic rubber-like media [3], granular
materials [4], and fissured media [5].

Diverse as the above examples are, they have in
common a structural feature that is responsible for the
high linearity of such media. This is the presence of
structural components sharply contrasting in linear
elastic properties. The presence of soft defects, or
inclusions, can give rise to locally high strains and
stresses. For a sample as a whole, this implies an anom-
alously high nonlinearity under low average strains [4].

This mechanism of structure-conditioned nonlinear-
ity is examined in detail by Zaitsev [6, 7] with reference
to a generalized model of a microinhomogeneous
medium. Noteworthily, the description proposed by
Zaitsev [6] is in close agreement with the results
obtained previously for specific cases [3-5]. However,
the Zaitsev model [6] takes into account only one level
of microstructural inhomogeneity: it assumes a two-
component medium in which components sharply dif-
fering in compressibility are considered homogeneous.
However, real microinhomogeneous media (such as
terrestrial rock and polycrystalline materials) obviously
have an inner structure (sometimes, of fractal character)
with several hierarchical levels spanning between them a
wide range of scales (see, for example; Nikolaev [8}). It is
natural to expect that this kind of hierarchy can strongly
affect the structure-conditioned local concentrations of
strains and stresses and on the nonlinear properties of
the medium. This matter requires a special analysis,
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which we will make, taking the generalized model of
Zaitsev [6] as the point of departure, and consider, as an
example. the specific case of a multicomponent granu-
lar medium.

A GENERALIZED MODEL
OF A HIERARCHICALLY
INHOMOGENEOUS MEDIUM

To begin with, consider the one-level approximation
of structural inhomogeneity. Following Zaitsev [6], we
choose a chain of point masses M joined together by
elastic elements, or springs. For simplicity, their unper-
turbed lengths are assumed to be the same and equal to
L < A, where A is the length of an acoustic wave
(Fig. la). In modeling one structural inhomogeneity
level of the medium, we suppose that the elasticity
coefficient K, of some springs is a small fraction of the
elasticity coefficient K of the remaining springs, such
that k/x, = Q > |. The linear number density of links
in the chain is , and the concentration of soft inclu-
sions is N,. Suppose, for convenience, that the chain has
a cross sectional area of unity. Then, N and N| may be
treated as volumetric concentrations in the medium,
and the elastic force acting between the elements corre-
sponds to the stress ¢. To determine the nonlinear elas-
tic properties of the medium, we suppose that the mate-
rial of each spring deviates from the linear Hooke’s law
only slightly

o = Me[l + fie)l. 3)
o =ME[l +£,(e)], @

where M and M, are the linear elastic moduli of spring
material, such that, as assumed previously, M/M, =
K/x;=Q > |, and the intrinsic nonlinearity of the mate-
rial of the elastic elements, both rigid and soft, is small:
ey~ fie) < 1.

We now find the elastic energy of springs as they are
strained, taking advantage of the known relation of
elastic energy to stress and strain. ¢ = dW/0g, to arrive
at an expression that relates the mean strain € of the
medium to the elastic stress ¢

M 1-¢
°=5 +§(Q—1){'*1+C<Q~1)f

5
x(l R 1))Jr 1 +CC((Q2— 1)f'(1 +C((25—1))}'

As equation (5) clearly shows, if the concentration of
defects is low, { < Q-!, the argument of the function f;
is Qe/[l + {(Q - 1)] = Qe. This implies that the strain
suffered by the soft inclusions is by about a factor of
Q > | greater than the mean strain € of the medium.
Because of this. the inclusions are shifted into a
strongly nonlinear region under low mean strains and
thus increase the nonlinearity of the medium as a
whole.
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Fig. 1. Structure of a model microinhomogeneous medium:
(a) a one-level approximation; (b and c) hierarchical struc-
tures of soft and rigid elements at the preceding level.

Let us analyze equation (5) in more detail for an
instructive case where the nonlinearity obeys a power
law, fle) = fi(e) = '™e"~ !, Here, I'™ is the dimension-
less nonlinearity coefficient of the nth order, n > 1.

Then, equation (5) takes the form

o = eBM{1+¢"'AT™}, 6

where the coefficients A and B, which characterize the
influence exerted by defects, are

B=[{1+{Q- DI, M
A= 1+€(Qn_l) (8)

[1+5(Q- 11"

According to equations (7) and (8), as long as the num-
ber density of defects is very low, such that {Q" < 1,
both the linear elasticity of the medium and the nonlin-
earity coefficient are almost insensitive to their pres-
ence (A = B = 1). Further on, when {@"> 1,but{Q < 1,
the linear elastic modulus still remains almost constant,
B = 1, but the nonlinearity coefficient of the medium
increases manifoldly (A = {Q” > 1). Upon a further
increase in defect concentration {, when {Q > 1, but as
before £ < 1, the linear elasticity of the medium also
decreases (B = ({Q)~! < 1). However, the nonlinearity
coefficient of the medium remains anomalously high
(A= {!-" > 1, because the exponent n > 1). Finally,
with { tending to unity, the elastic properties of the chain
are mainly determined by the elasticity of the soft inclu-
sions (B = Q!; that is, My,.., = M/Q), and the nonlinear-
ity coefficient reverts to its previous value (4 = 1).

Thus, the nonlinearity coefficient I'” passes
through a maximum, which is achieved at a very low
optimal concentration of inclusions

- -1 n
b = (1= 17(@- 1" =n(n- 1@ -1 g
=(n-1)"'0" < 1.
The nonlinearity growth factor is then given by
A(gopt) ~ (n . l)n- In-nQn- S 1’ (10)



=)

whereas the elastic modulus undergoes a far smaller
change

B(Cop) =(n—1)/n~1. (1D

Quahtatlvely the behavior of the dependences A() and
B(Q) is illustrated in Fig. 2.

To sum up, the simple one-level model of a micro-
inhomogeneous medium examined above is an instruc-
tive illustration of the assertion made earlier about the
role of soft defects, or inclusions: for the nonlinearity of
a medium to rise strongly, the inclusions must be much
softer than the surrounding material and their concen-
tration must be low.

To take into account the hierarchical character of the
structure, we now suppose that cach element of the
model examined above has an internal microinhomoge-
neity of its own, as shown in Fig. 1b and lc. The influ-
ence of this new structural level can be analyzed by
drawing upon the expressions derived for the one-level
model.

Several points deserve specml mention. First, by virtue
of the mechanism examined above. the original intrinsic
nonlinearity f(€) of ngld elements in equatton (3) can
btf()ﬁgly li‘lCﬁ:aac at UIC cxpex“lse Ul anxr Il'_ltema.l mnumo-
geneity shown in Fig. 1b. In particular, given the optimal
defect concentration defined by equation (9), the qua-
dratic nonlinearity parameter can. according to equa-
tion (10). increase by a factor of Q/4. However, as fol-
lows from equation (5), the inclusion of this element in
the higher-scale structure shown in Fig. la will not
change markedly the nonlinearity of the medium as a
whole. The reason is that the coetficient of the rigid-
element nonlinearity function f is of the order of unity,

thatis. (1 -/l +{Q-1)~1.

The situation can be significantly different if the soft
inclusions shown in Fig. la acquire an additional struc-
tural level (see Fig. lc): their original nonlinearity can
then increase by a factor of Q/4 at the expense of the
smaller-scale structure. But, in contrast to the structur-
ing of rigid elements, the nonlinearity of the higher-
scale medium as a whole can increase again by a factor
r\F n/A as f‘n“nun Frnm a farm af ﬂ-\o cnafficiant nf th

LU ulu wermol ine ceeincient or e

soft element nonlinearity function f; in (5).

A similar reasoning applies to every additional hier-
archical level in the structure of the medium. Thus, the
multilevel arrangement of rigid elements will not cause
an additional increase in the nonlinearity of the
medium. but the multilevel structure of soft elements
can cause the nonlinearity of the medium to increase in
a geometric progression, (I'® ~ (Q/4), where k> 1 is
the number of hierarchical levels). In real physical
media. however, the total range of component elastic-
ity, Q.- across all structural levels is limited to three
or four orders of magnitude. Because of this, it usually
makes sense to consider in real media at most three or
four structural levels differing in elasticity, the contrast
in elasticity between the components at each level
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Fig. 2. Graph of the nonlinearity growth factor A({) (full
line) and the elastic modulus variation coefficient B() plot-
ted against defect concentration.

being of the order Q; ~ Qmax Consequently, the result-

ant maximum increase in the nonlinearity coefficient
compared to a homogeneous medium is of the same

17k
t"lQ

order in all cases, ~ (Qumax J* = Ouax- That is,

it is limited to Qp,, all the same. This convincingly
explains why the experimentalily observabie nonlinear-
ity coefficient I'® is not greater than 10° to 10° even for
such multilevel media as terrestrial rock.

THE GENERALIZED MODEL
AND CONTACT-CONTAINING STRUCTURES

As Zaitsev has shown [6, 7], the facts gleaned about
the structural mechanism responsible for the existence
of anomalous nonlinearity closely agree with what one
can deduce from the specific models of nonlinear elas-
ticity developed for bubble-seeded liquids [3], porous
materials [9], and fissured media [5], provided the
parameters Q and { introduced earlier are suitably cho-
sen to fit those of the models listed.

Another important group of microinhomogeneous
media is constituted by contact-containing materials,
notably, granular media. In them, the material in the
a1l Af tha araine narfarme tha 1nh Af matd alamante
UUIR U1 UIC pglailld PCLIVLHD UIC JUU Ol 11g1U CICIHICHLS,
and the intergranular contacts play the role of soft
inclusions.

Obviously, the structural inhomogeneity in such
media can exist on several scales. For example, the
pores between the grains can be filled by finer grains,
which can in turn contain even smaller grains (a multi-
fraction or multilevel structure of this kind is typical of
many real unconsolidated media). It is of interest to see
how this can affect the nonlinearity of the medium.

Let an aggregate of unit volume in a granular mate-
rial be built up of spherical granules differing in size as
follows. The largest particles, all of the same radius R;,
are packed at random. The voids between them are
filled by particles of a radius R, < R,, and so on. The
voids are assumed to take up the same share of the total
Vol. 43 No. 5
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volume in each fraction (and be equal to a = 0.39 for
the random packing). Hence, the volumes taken up by
the different size orders of particles have the following
ratio:

VieVaooV,=1:a: ... 0", (12)

where 7 is the number of hierarchical levels of parti-
cles.

Let us write the material equation of the granular
medium, allowing for its multilevel structure. Proceed-
ing as in our previous development [4], the relation ()
may be written as

RE(1 - 0)Cy a2

o(e) = 5 (13)
3n(l-v7)
“n ] _a/z_
Cc, = Yoo 2 =1 i 14)
a ==

i=1

Note that equation (13) holds for plane deformation as
well [4]. Thus, equation (13) differs from the one-frac-
tion case [4] in the factor C,. This implies that addi-
tional lower-scale fractions appearing in the medium
serve to increase its elasticity. To demonstrate, we
expand equation (13) in a power series about some ini-
tial strain €, and obtain for variations of stress an equa-
tion of the type (1) where

nE(l - OC)B,,Em

= €0 > (15)
2r(1 - v?)
Y = 1/4¢,, (16)
B =-1/12¢;. amn

It is thus seen that the nonlinear parameters expressed
in terms of the initial compression of the medium
remain unchanged as the packing hierarchy acquires
additional levels. On the other hand, the initial com-
pression g, itself is determined by the initial static pres-
sure applied to the medium. That is, given the same
pressure, the initial compression will, according to (13)
and (14), be lower in a multifraction medium, and the
nonlinearity parameters of the medium will increase. In
particular, it is an easy matter to show that, given a con-
stant pressure, in a medium with n particle sizes, the
quadratic nonlinearity coefficient Y(G = const)
increases in proportion to (o' — 1)23(a? — 1)-23,
In a medium composed of five particle sizes, this will,
for example, give a fourfold increase in nonlinearity.

It is likewise of interest to compare the results obtained
for a granular medium with the finding of the previous
section that the nonlinearity of a hierarchically arranged
medium can increase manifoldly. To begin with, note that,
as Zaitsev has shown [6], a one-fraction granular material
can be viewed as corresponding to the model of a micro-
inhomogeneous medium (equations (2)—~8), where the
parameters  and Q are related to the characteristics of
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Fig. 3. Structure of a model multifraction granular medium.

the granular medium § = g, and Q = €;°"> such that

{0 =¢;'"* > 1). This signifies two things. First, the
contact concentration optimal for an increase in nonlinear-
ity in such a medium has been exceeded. Second, the
increase in the nonlinearity coefficient y is determined,

according to (8), by A({Q > 1) ={-' = ¢;', which is sig-
nificantly smaller than A({,, = O™ ~ 0! ~ e

Thus, the salient features of a granular medium are
that the parameters Q and {, which characterize the
elastic properties and concentration of inclusions, are
not, by themselves, independent, and that the product
€Q occurs outside the region where a maximum rise in
nonlinearity can be achieved. In terms of equivalent
elastic elements, the above features will affect the hier-
archical arrangement of the granular medium as fol-
lows. As the structure of equations (18)—(20) implies, a
many-fraction granular medium can be modeled by a sys-
tem of parallel-connected springs, as shown in Fig. 3.
Each ith spring, of the same unit length L = 1, has a soft
portion (corresponding to the soft intergranular con-
tacts in the ith fraction) and a “perfectly rigid” portion
of length (1 — a”) (which, according to (12), corre-
sponds to the volume of grains in all the preceding frac-
tions).

When the fractions, or springs, are connected in par-
allel, the absolute changes in their lengths are the same.
Therefore, for the ith fraction we have

(€0)is, = O (£0);, (18)

(&)iyy = a_i(s)l’ (19
where (&), =€y and €, = € represent the initial strain and
its variations for the medium as a whole. Suppose that,
in each spring shown in Fig. 3, its compressible portion
is described by

(20

where K = const, and the exponent in the case of Hert-
zian contacts is b = 3/2. Now, proceeding as in the case
of equation (13) and using equations (18) and (19), we

o= Ke?,
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derive from equation (20) the following expressions for
the linear elastic modulus and the nonlinearity coeffi-
cient:

b-1 _-bhi

M = Kbe, o (21)
(b-1a' _(b=-1)

= -_—= 5 22

¥ 28y o 2g, (22)

As can be seen, the rigid portion present in each ith ele-
ment acts solely to change its linear elasticity (in com-
pliance with equation (21)) and, in terms of the initial
compression g, does not affect the nonlinear proper-
ties, even if the soft portion takes up a small share of the
total length. This finding contradicts, it would seem,
what has been found in Section | of this paper, where it
is argued that-a soft inclusion appearing in a rigid
medium should lead to a significant increase in its non-
linearity. It should be recalled, however, that the above
finding holds when the relative softness Q and defect
concentration { are specified independently of one
another. In the granular-medium packing model in
question, these parameters are, as has been noted, inter-
related in such a way that the nonlinear properties turn
out to be independent of the share taken up by the soft
inclusions. Since the individual elastic elements, or
particle-size fractions, are joined in parallel, the asser-
tion that the nonlinear parameters are independent must
hold for the entire medium as well.

On the other hand, our analysis has given insight
into how a multicomponent granular medium must be
arranged so that the structural mechanism responsible
for an increase in nonlinearity discussed in the previous
section can work. First, every fraction, or spring, made
up of almost equally loaded grains of the same size,
may contain extremely relieved contacts for which the
effective softness and concentration are not subject to

the constraint {Q = €;' ~. In a truly one-dimensional
medium, such “hanging” contacts cannot exist, but, in
the bulk of real granular media, intergranular contacts
can strongly differ in loading (because of, e.g., the non-
spherical shape of the granules). Such soft inclusions
can significantly increase the nonlinearity of the mate-
rial [10. 11].

There is another possible way for the nonlinearity to
increase. more closely related to the presence of a mul-
tiplicity ot fractions. To demonstrate, equations (18)
and (19) for the compression of parallel-connected
fractions. or springs (see Fig. 3), are written for the case
where the applied force causes the fractions to deform
all at the same time. It may happen. however, that some
of them do not begin to deform until a certain threshold
stress is achieved. Then. such relieved fractions will, as
follows from (16) and (17), possess a significantly
higher nonlinearity and. as a consequence, will sharply
enhance the nonlinearity of the medium as a whole.
Such systems of contacts can be present in, e.g., real
unconsolidated terrestrial rocks composed of differ-
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ently sized and irregularly shaped grains. These sys-
tems are also exemplified by rough contacting surfaces,
such as those of cracks in an elastic material, often hav-
ing a fractal structure {12].

CONCLUSION

In summary, the examination reported herein has
shown that, for a microinhomogeneous medium to have
highly nonlinear elastic properties, there must be a
small amount of a soft component present in the mate-
rial. With only one structural level of such inhomoge-
neity, this can cause the quadratic nonlinearity parame-
ter I'® to increase by a factor of 9/4 > 1, where Q is
the relative softness factor of inclusions. With the soft
elements arranged in a hierarchical structure, the mech-
anism examined above can, in principle, cause the non-
linearity of the medium to increase in a geometric pro-
gression. In real physical media, however, the elasticity
of the components varies over a limited range. Because
of this, the resultant maximum increase in the nonlin-
earity coefficient compared to a homogeneous medium
is likewise limited to three or four orders of magnitude.

A proper understanding of these general features of,
and constraints on, the structural mechanism responsi-
ble for the increase in nonlinearity can make it easier to
build physical models for the nonlinear elasticity of
microinhomogeneous media.
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